THERMAL DECOMPOSITION OF BARIUM(II) TETRAPHENYLBORATE

Zhou Bao-xue^{1*}, Zhong Wei-ke², Zou Li-zhuang³ and Wang Xiao-ling³

¹Department of Chemistry, Shandong Normal University, Jinan 250014 ²Shandong Provincial Environmental Monitoring Center, Jinan 250014 ³Department of Chemistry, Shandong Yantai Teacher's College, Yantai, 264025, P. R. China

Abstract

Barium(II) tetraphenylborate, $Ba(Bph_4)_2 \cdot 4H_2O$ was prepared, and its decomposition mechanism was studied by means of TG and DTA. The products of thermal decomposition were examined by means of gas chromatography and chemical methods. A kinetic analysis of the first stage of thermal decomposition was made on the basis of TG and DTG curves and kinetic parameters were obtained from an analysis of the TG and DTG curves using integral and differential methods. The most probable kinetic function was suggested by comparison of kinetic parameters. A mathematical expression was derived for the kinetic compensation effect.

Keywords: barium(II) tetraphenylborate, non-isothermal kinetics, thermal decomposition

Introduction

Sodium tetraphenylborate is widely used in inorganic analysis, organic analysis, modern electrochemical analysis, optical analysis, organic synthesis, catalysis, etc. Since NaBph₄ was synthesized by Witting and his coworker in 1951 [1], the characteristics of alkali metal tetraphenylborates have been widely studied. However, very little work is found in literatures concering alkaline earth tetraphenylborates, especially in respect of thermal analysis. Here, an alkaline earth metal tetraphenylborate was prepared and characterized. The thermal decomposition mechanism and kinetic parameters were studied under non-isothermal conditions, the Achar differential equation [2] and the Coats-Redfern integral equation [3] were used to analyze the non-isothermal decomposition process. The integral and differential equations are as follows:

$$\ln(g(\alpha)/T^2) = \ln(AR/\beta E) - E/RT$$
⁽¹⁾

0368-4466/96/ \$ 5.00 © 1996 Akadémiai Kiadó, Budapest

John Wiley & Sons, Limited Chichester

^{*} Author to whom all correspondence should be addressed.

$$\ln[(d\alpha/dt)/f(\alpha)] = \ln A - E/RT$$
⁽²⁾

In the above equations, α is the fractional decomposition, T the absolute temperature (K), $d\alpha/dt$ the reaction rate, A the preexponential Arrhenius factor, β the heating rate (K min⁻¹), E the apparent activation energy (kJ mol⁻¹), R the gas constant (kJ mol⁻¹ K⁻¹), $f(\alpha)$ and $g(\alpha)$ the differential and integral functions, respectively.

Experimental

Purification of reagents and preparation of the compound

Analytical grade NaBph₄, BaCl₂ and cyclohexane were used as received. Ether (AR) was treated with FeSO₄ solution and distilled at 307.9 K (n_D^{20} =1.2652). Deionized water was redistilled (conductivity 1.22×10⁻⁴ Sm⁻¹).

Fig. 1 TG, DTG and DTA curves of Ba(Bph₄)₂·4H₂O

Preparation of barium tetraphenylborate. Prepare a solution of sodium tetraphenylborate by dissolving 2.15 g of the reagent in 35 ml of a mixture of ether and water (34.4:0.6 ν/ν), add this solution to 35 ml of 1.0 mol l⁻¹ BaCl₂ solution in a separating funnel, shake it for 3 min, remove the aqueous phase, and mix the organic phase with another 35 ml portion of 1.0 mol l⁻¹ BaCl₂ solution in the separating funnel just as above, and repeat twice. Distil the organic phase under a pressure of 40.52 kPa at 308 K until the ether is removed, change the pressure to 10.13 kPa and distil the residual solution to produce crystals of $Ba(Bph_4)_2$ · $4H_2O$; wash the crystals three times with 10 ml portions of cyclohexane.

The product was purified as follows: the crystals were dissolved in water, the solution was filtered, then the filtrate was distilled at a pressure of 10.13 kPa at 308 K to yield crystals of Ba(Bph₄)₂·4H₂O. The crystals were dried at room temperature in a vacuum desiccator for 6 days before use. Analysis for Ba(Bph₄)₂·4H₂O is as follows: C: 67.83 (68.04); H: 5.51 (5.71); B: 2.68 (2.55); Ba: 15.67 (16.19).

Physical measurement

Thermal analysis was carried out with an LCT-1 model TG-DTA instrument (Beijing Optical Instruments Factory, China). The working conditions were as

Function No.	f(α)	$g(\alpha)$	
1	1/(2α)	α ²	
2	$[-\ln(1-\alpha)]^{-1}$	$\alpha + (1-\alpha)\ln(1-\alpha)$	
3	$3/2[(1-\alpha)^{-1/3}-1]^{-1}$	$(1-2/3\alpha)-(1-\alpha)^{1/3}$	
4	$3/2(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$	$[1-(1-\alpha)^{2/3}]^2$	
5	$3/2(1+\alpha)^{2/3}[(1+\alpha)^{1/3}-1]^{-1}$	$[(1+\alpha)^{1/3}-1]^2$	
6	$3/2(1-\alpha)^{4/3}[\{1/(1-\alpha)^{1/3}-1\}]^{-1}$	$[\{1/(1-\alpha)\}^{1/3}-1]^2$	
7	2/3a ^{-1/2}	$\alpha^{3/2}$	
8	(1 - α)	$-\ln(1-\alpha)$	
9–12	$(1/n)(1-\alpha)[-\ln(1-\alpha)]^{-(n-1)}$	$\left[-\ln(1-\alpha)\right]^n$	
	n = (2/3, 1/2, 1/3, 1/4)		
13–14	$n(1-\alpha)^{(n-1)/n}$	$1 - (1 - \alpha)^{1/n}$	
	n = (2, 3)		
15-18	$(1/n)\alpha^{-(n-1)}$	α ⁿ	
	n = (1, 1/2, 1/3, 1/4)		
19	$(1-\alpha)^2$	$(1-\alpha)^{-1}-1$	
20	$(1-\alpha)^{3/2}$	$(1-\alpha)^{-1/2}$	
21–23	$(1/n)(1-\alpha)[-\ln(1-\alpha)]^{-(n-1)}$	$\alpha)]^{-(n-1)} \qquad [-\ln(1-\alpha)]^n$	
	n = (2, 3, 4)		
24	$1/2(1-\alpha)^3$	$[1/(1-\alpha)]^2-1$	
25	$4(1-\alpha)^{3/4}$	$1 - (1 - \alpha)^{1/4}$	
26	$6[1-(1-\alpha)^{1/3}]^{1/2}(1-\alpha)^{2/3}$	$[1-(1-\alpha)^{1/3}]^{1/2}$	
27	$4[1-(1-\alpha)^{1/2}]^{1/2}(1-\alpha)^{1/2}$	$[1-(1-\alpha)^{1/2}]^{1/2}$	
28–30	$(1/n)(1-\alpha)^{-(n-1)}$	$1 - (1 - \alpha)^n$	
	n = (2, 3, 4)		

Table 1 Function forms used in the present analysis

No.	<i>T</i> /K	α	da/dt
1	337.33	0.0589	0.1193
2	342.87	0.1397	0.2320
3	348.44	0.2506	0.3490
4	354.32	0.3715	0.5461
5	360.19	0.4923	0.6173
6	366.21	0.6060	0.5486
7	372.32	0.7097	0.4091
8	378.55	0.8134	0.2696
9	384.88	0.9172	0.1050

Table 2 Data for the dehydration process of Ba(Bph₄)₂·4H₂O determined on the basis of TG and DTG curves

follows: rate of oxygen flow 60 ml min⁻¹, the measurement ranges 20 mg in TG, 250 μ V in DTA and 5 mV min⁻¹ in DTG, the heating rate was 5.00 K min⁻¹, the temperature range was 40 to 600°C, the sample mass was 12.44 mg. UV spectra were recorded with a Shimadzu 365 spectrometer. Gas chromatography was carried out with a HP5890 gas chromatograph.

Component analysis

 Ba^{2+} and Bph_{4}^{-} were determined in barium tetraphenylborate according to the general procedure [4, 5] C and H contents were determined using a Perkin Elmer 240 elemental analyzer.

Results and discussion

Thermal decomposition process

The TG curves indicate that the earlier stage of thermal decomposition is a dehydration process with an endothermic DTA peak. Four water molecules were lost in one step for $Ba(Bph_4)_2$ ·4H₂O (mass loss: calcd. 8.50%, found 8.36%).

After the dehydration process, the organic material is oxidized until the level corresponding to barium borate $Ba(BO_2)_2$ is attained. This oxidative process involves two decomposition steps, a fast oxidative step with a sharp exothermic DTA peak, and a slow step with a flat exothermic DTA peak. Four phenyl groups were lost in the fast step (mass loss calcd. 41.09%; found 41.71%). The others were lost in the slow step (mass loss calcd. 73.68%; found 73.96%). In order to identify the gaseous products of the decomposition of $Ba(Bph_4)_2$:4H₂O, the volume of the crucible was changed to 0.5 ml and the amount of sample to

150 mg, the other experimental conditions were unchanged. Only H_2O and CO_2 were found in the gas mixture by gas chromatography. The final oxidative decomposition products is $Ba(BO_2)_2$, as also confirmed by means of alizarin red S solution [6].

Function	Differential method				Integral method		
No.	lnA	<i>E</i> /kJ mol ⁻¹	r	lnA	E/kJ mol ⁻¹	r	
1	18.11	58.70	0.6905	33.56	108.50	0.9405	
2	24.71	79.37	0.8162	36.94	119.69	0.9546	
3	26.32	88.24	0.8562	37.14	124.43	0.9600	
4	32.21	104.96	0.9092	40.64	134.13	0.9692	
5	10.80	44.56	0.5921	27.69	98.58	0.9305	
6	39.56	125.86	0.9491	52.63	167.57	0.9877	
7	8.760	30.08	0.4993	24.19	79.88	0.9383	
8	16.93	51.62	0.8873	22.32	71.92	0.9783	
9	8.05	25.64	0.7518	13.40	45.95	0.9762	
10	3.53	12.66	0.5263	8.83	32.96	0.9739	
11	-1.10	-0.32	0.0174	4.09	19.98	0.9684	
12	-3.51	-6.81	0.3606	1.58	13.49	0.9609	
13	7.42	26.54	0.6059	17.43	60.51	0.9590	
14	9.95	34.90	0.7356	18.34	64.07	0.9662	
15	-0.70	1.46	0.0339	14.69	51.25	0.9337	
16	-10.46	-27.15	0.6196	4.80	22.63	0.9164	
17	-13.89	-36.70	0.7573	1.23	13.09	0.8926	
18	-15.69	-41.47	0.8074	-0.72	8.32	0.8570	
19	34.58	101.77	0.9915	33.02	101.41	0.9934	
20	25.07	76.69	0.9696	4.39	19.09	0.9128	
21	43.05	129.53	0.9537	48.48	149.83	0.9800	
22	68.88	207.44	0.9661	74.32	227.75	0.9806	
23	94.59	285.36	0.9710	100.04	305.67	0.9808	
24	52.92	151.93	0.9949	46.88	138.14	0.9882	
25	13.91	39.08	0.7854	18.74	65.94	0.9696	
26	-1.51	-0.12	0.0052	6.77	29.04	0.9569	
27	-3.62	-6.71	0.2411	6.28	27.26	0.9497	
28	-17.66	-48.69	0.6304	10.29	37.82	0.8751	
29	-34.90	-98.85	0.7889	7.22	28.92	0.165	
30	-52.26	-149.0	0.454	5.00	22.71	0.612	

Table 3 Results of kinetic analysis of the decomposition of Ba(Bph₄)₂·4H₂O

These results suggested a possible decomposition process of $Ba(Bph_4)_2 \cdot 4H_2O$ under O₂ as follows:

$$\begin{array}{l} Ba(Bph_{4})_{2} \cdot 4H_{2}O \xrightarrow{328 - 423K} Ba(Bph_{4})_{2} \xrightarrow{423 - 508K} Ba(OBph_{2})_{2} \xrightarrow{508 - 873K} Ba(BO_{2})_{2} \\ Ba(B(C_{6}H_{5})_{4})_{2}(c) + 60O_{2}(g) \longrightarrow Ba(BO_{2})_{2}(c) + 48CO_{2}(g) + 20H_{2}O(g) \end{array}$$

Non-isothermal kinetic study of the dehydration process

The possible forms of $f(\alpha)$ and $g(\alpha)$ are listed in Table 1. The original data for the dehydration process of Ba(Bph₄)₂·4H₂O determined on the basis of TG and DTG curves are listed in Table 2.

Using the possible forms of $g(\alpha)$ and $f(\alpha)$ in Table 1, the data in Table 2 were analyzed by use of Eqs (1) and (2). For Eqs (1) and (2), the kinetic analysis was completed by the linear least-squares method on an IBM computer. The results are shown in Table 3.

The results in Table 3 clearly show that the values of E and A yielded by the two methods are approximately the same and the linear correlation coefficients are better when the probable function of the mechanism is taken as function no. 19 in Table 1. It can be concluded that the probable function of the mechanism of the dehydration process of Ba(Bph_4)_2·4H_2O is function no. 19 in Table 1. The kinetic equation of this process is

$$d\alpha/dt = A \exp(-E/RT)(1 - \alpha)^2$$

The kinetic compensation effect according to the mathematical expression is $\ln A = aE + b$, the kinetic parameters (*E* and $\ln A$) being computed by the linear least-squares method on a computer, and the kinetic compensation parameters *a* and *b* are obtained. The mathematical expression for the kinetic compensation effect is

$$\ln A = 0.3240E - 0.3847 r = 0.9942$$

References

- 1 G. Wittig, P. Raff, Ann., 573 (1951) 195.
- 2 B. N. N. Achar, Proc. Int. Clay Conf., Vol. 1, Jerusalem, 1966, p. 67.
- 3 A. W. Coats and J. P. Redfern, Nature, 68 (1964) 201.
- 4 F. P. Gorbenko and A. A. Nadezhda, Ukr. Khim. Zh., 34 (1965) 625.
- 5 O. Popovych, A. Gibofsky and D. Berne, Anal. Chem., 44 (1972) 811.
- 6 H. Bao-Yun, Quick Qualitative Analysis, High Education Press, Beijing, 1983, p. 123 (in Chinese).